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Abstract

Background While there are effective lifestyle interventions that may induce remission in
Type 2 Diabetes Mellitus (T2DM), patient-to-patient differences often limit the effectiveness
of these types of programs. The advent of Artificial Intelligence (Al) and Machine Learning
(ML) presents exciting and new opportunities for the use of precision lifestyle medicine,
which uses patient-specific data to tailor the types of lifestyle programs used for each indi-
vidual.
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Objective The objective of this paper is to synthesize existing literature on the relationship
between the use of Al and ML, and lifestyle interventions for the management of T2DM, with
particular respect to algorithm development, data collection and personalization techniques.

Methods Articles were identified through systematic searches of PubMed, Embase, Scopus,
IEEE Xplore, and Web of Science from 2015 to August 2025. In total 100 studies were
included in the final synthesis; these studies included information regarding adults (age =18)
with T2DM who had completed either a remission and/or glycemic outcome(s), and who had
utilized Al to develop personalized lifestyle interventions. The data from eligible studies
were synthesized narratively according to the PRISMA 2020 guidelines.

Results The geographical distribution of studies was diverse and used a variety of platforms
to deliver the intervention including mobile applications, conversational agents, decision-
support systems, and digital twins. Al methods used in lifestyle-targeted interventions in-
cluded supervised models (random forests, gradient boosting, support vector machines) for
making predictions; convolutional neural networks (CCN) to forecast remission in patients
who underwent surgery to treat T2DM; recurrent neural networks (RNN) for predicting glu-
cose levels; clustering to subgroup patients based on phenotype; and reinforcement learning
(RL) to optimize insulin titration and to manage multimorbidity in patients with T2DM.

Conclusion Al and ML can transform T2DM care by enabling adaptive, precision interven-
tions for remission. Future work should emphasize large-scale trials, explainable algorithms,
and equitable deployment to ensure sustainable real-world impact.

Keywords: Type 2 Diabetes Mellitus, Diabetes Remission, Artificial Intelligence, Precision
Lifestyle Medicine, Systematic review.

1. INTRODUCTION

1.1 Global Burden of Type 2 Diabetes

Globally, diabetes mellitus type 2 is among the leading causes of morbidity attributed to non-
communicable disease status. Recent estimates of the Diabates prevalence worldwide indicate that
there are presently > 500 million adults living with diabetes—this number is expected to reach ap-
proximately 783 million adults by the year 2045 if current trends prevail [1]. T2DM is characterized
by insulin resistance as well as the progressive decline in S-cells; as a result, many patients present
with chronic hyperglycemia. Additionally, T2DM is considered to be a major risk factor for several
associated complications, including but not limited to; cardiovascular disease, diabetic nephropa-
thy, diabetic neuropathy, and diabetic retinopathy. The combination of the direct healthcare costs
for treatment of diabetes with indirect costs, such as reduced productivity and increased rates of
disability, are placing enormous burdens on the healthcare delivery systems of both developed and
developing countries.

Historically, glycemic control has been the main objective of T2DM management which is tradition-
ally reached with the help of pharmacotherapy and lifestyle changes. Nevertheless, this paradigm
changed over the last few years as remission has turned into a clinical achievable goal. Remission
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as the non-pharmacological achievement of normoglycemia has been documented in studies that
use intensive lifestyle interventions and metabolic surgery [2, 3]. Such a shift in paradigm is an
increasing appreciation that interventions that can achieve large weight reductions and metabolic
changes can change the course of the disease, slow long-term morbidity, and eventually decrease
healthcare expenditures.

1.2 Lifestyle Interventions in Diabetes Remission

The management and remission of T2DM still needs a central focus on lifestyle modification. Piv-
oting trials, including the Diabetes Remission Clinical Trial (DiRECT), demonstrated that remission
was achieved in up to 46 percent of patients after 12 months when intensive structured weight man-
agement programmes (particularly involving the low-calorie total diet replacement) were used [3].
On the same note, low and very low-carbohydrate diets were shown to be effective for improvement
in the rate of remission at six months, and improvement in cardiometabolic parameters, such as
triglycerides, weight and insulin sensitivity, as confirmed in systematic reviews and meta-analyses

[4].

However, despite their success, generic lifestyle prescriptions used on a large scale in different pop-
ulations is not possible. The predictions of variability are subject-specific variations of compliance,
basal metabolic characteristics, genetic predisposition, and environmental exposures [5], indeed,
while subgroups have been identified to achieve their sustained remission following lifestyle inter-
vention, others relapse a few months after lifestyle intervention, regardless of adherence, empha-
sizing the need for strategies that take into account the inter-individual variability. This disconnect
highlights the limitations of generic prescriptions and ignites the quest for more tailored solutions.

1.3 Emergence of Precision Lifestyle Medicine

Given the variability of lifestyle intervention results, the concept of personalised lifestyle medicine
has emerged as a model of precision medicine addressing an individual’s biological, behavioural and
environmental information to optimally inform therapeutic targets. This approach is analogous to
those of precision medicine in oncology and pharmacogenomics but applied in the realm of lifestyle
measures such as diet and physical activity and behavioural change.

Precision lifestyle interventions are now possible through a number of enabling technologies. If
a CGM is used in real-time, glycemic excursions are detected and differences between people in
responses to diets can be used to differentiate and shape the nutrition programs [6]. High res-
olution physical activity, sleep, and energy expenditure efficacy can be obtained using wearable
accelerometers and smartwatches and can be positively linked to glycemic outcomes and CVD risk
[7]. Furthermore, the rise of omics technologies (like genomics, metabolomics, and microbiome
profiling) increases the possibility of better stratification of individuals based on biological mecha-
nisms underpinning insulin resistance and its weight loss response [1].

The convergence of these sources of data can enable clinicians and researchers to move away
from the over generalization of recommendations by population towards the individualized and
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personalized recommendations that will ensure maximal efficacy, adherence and sustainability of
behavioral change.

1.4 The Role of Artificial Intelligence and Machine Learning

The vast and heterogeneous data generated from CGM, wearables, and multi-omics profiling need
advanced analytical tools to generate actionable data. Machine learning (ML) and artificial intelli-
gence (Al) tools then became an indispensable toolkit in high-resolution lifestyle medicine. They are
able to include multimodal data, detect latent patterns and the individual response to interventions
that would never be detected by conventional statistical algorithms.

Predictive modeling of glycemic outcomes and treatment responses commonly employs supervised
learning methods, such as random forests and gradient boosting machines [8]. The use of clustering
methods would allow one to divide patients into subtypes according to their metabolic, behavioral, or
genome characteristics in order to effectively design interventions [9, 10]. Reinforcement learning
methods can also be used to dynamically adjust lifestyle recommendations to patient feedback or to
a changing set of physiological signals.

Practical applications are already being tested in both preclinical and clinical contexts. Al-driven
dietitian programs combining large language models with image recognition (e.g., ChatGPT with
Dino V2) demonstrate promising results in food recognition and dietary counseling [11]. Voice-
based conversational Al has been shown to accelerate insulin titration, improve adherence, and
enhance glycemic control in clinical trials [11]. Digital twin models, which create individualized
virtual representations of patients, allow simulation of metabolic responses to diet, activity, and
pharmacological interventions, showing early evidence of improving diabetes outcomes [12, 13].
Collectively, these instances demonstrate the revolutionary capability of Al for facilitating highly
personalized, adaptive, and efficient lifestyle interventions.

1.5 Rationale for This Review

Although separate investigations have shown the potential of Al and ML across different dimen-
sions of diabetes management, no comprehensive synthesis has currently consolidated these results
throughout the areas of precision lifestyle medicine and T2DM remission. Existing reviews have
focused separately on Al in diabetes management [8, 14] lifestyle interventions [4], or digital health
platforms [15], but the convergence of these fields remains underexplored. Additionally, the rapid
uptake of healthcare Al applications necessitates a timely assessment of their impact on practicality,
scalability, and efficacy as well as any ethical issues involved with deploying them. In this review,
we attempt to bridge this knowledge gap by reviewing the evidence regarding Al-supported pre-
cision lifestyle-based intervention approaches for inducing remission of T2DM. This will provide
a framework for establishing best practices for future studies, identifying limitations, and also for
guiding the formation of research priorities.

The goal of this review will be to evaluate the ways in which Al and machine-learning technolo-
gies can augment precision lifestyle-based approaches for T2DM remission. Furthermore, we will
identify how precision data inputs used by these interventions were applied to develop the various
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tailored interventions and how effective these Al-supported interventions were when compared to
the standard diabetes care approach.

1.6 Research Objectives and Questions

1. What is the impact of using machine-learning methodologies to customize diet, exercise and
weight loss for promoting T2DM remission?

2. What type of precision Data inputs are incorporated within these Al-supported methods?

3. In terms of achieving remission, how effective are Al-supported methods versus standard
diabetes care?

Through examining these questions, this review will deliver thorough insights regarding how Al
can enhance precision lifestyle medicine and transform the approach from glycemic management
to remission within T2DM.

2. METHODOLOGY

2.1 Protocol and Reporting Standards

A systematic evaluation method based on the PRISMA 2020 guidelines was followed for this
systematic evaluation. Methodology supports the entire systematic evaluation process, such as
literature searching, study selection, data collection, and bias assessment, focused on the principles
of transparency and reproducibility. The methodology also used information from earlier systematic
evaluations of Artificial Intelligence’s role in Precision Medicine to inform the identification of
databases, how to formulate search queries, and integrate varied evidence.

2.2 Search Strategy

The literature search was comprehensive and conducted in 5 major databases (Google Scholar,
PubMed, IEEE Xplore and Web of Science) using search queries from the database’s inception
to August 2025. However, the timeframe for eligibility for the study searches for this systematic
evaluation was restricted to the studies published between 2015-2025 to cover current advancements
in Artificial Intelligence in Clinical Applications. The final Boolean string used across databases
was:

(“Type 2 Diabetes” OR “T2D”) AND (remission OR “diabetes remission”) AND (“machine learn-
ing” OR “artificial intelligence” OR “AI” OR “deep learning” OR “predictive model”) AND (“lifestyle
intervention” OR “digital health” OR “personalized diet” OR “weight management”) AND (“pre-
cision lifestyle medicine”).
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The search produced 3,220 entries. Restrictions were applied to limit findings to human participants
and English-language articles. Additionally, databases, reference lists from relevant reviews and
selected investigations underwent manual examination to identify further eligible entries.

2.3 Eligibility Criteria

Eligibility requirements were determined beforehand using the PICOS structure (Population, In-
tervention, Comparator, Outcomes, Study design). To improve clarity and reproducibility, the
inclusion and exclusion specifications are presented in TABLE 1.

Table 1: Inclusion and Exclusion Criteria for Study Selection

Domain Inclusion Criteria Exclusion Criteria

Population Adults aged =18 years diagnosed with ~ Animal studies, pediatric populations,
type 2 diabetes mellitus (T2DM). gestational diabetes, or Type 1 diabetes.

Intervention Al- or ML-enabled tools applied to Studies using Al solely for diagnosis,

personalize lifestyle interventions (diet, screening, or complication detection.
exercise, digital health, behavior).

Comparator Standard of care, conventional lifestyle =~ N/A (no comparator required if
interventions, or non-Al approaches single-arm intervention).
(when available).

Outcomes  Remission of T2DM, HbAlc reduction, Studies without relevant lifestyle or

weight loss, medication clinical outcome reporting.
reduction/de-escalation, adherence,
usability.
Study RCTs, cohort studies, pilot feasibility Editorials, commentaries, conference
design trials, retrospective digital health studies, abstracts without data, or opinion papers.

meta-analyses.

2.4 Screening and Selection Process

All records underwent independent screening by two reviewers using a two-stage process. Titles
and abstracts received initial assessment for relevance, then full-text review was conducted to verify
eligibility. Disagreements were settled via consensus and, when required, adjudication through
a third reviewer. The PRISMA 2020 flow diagram (FIGURE 1) depicts the screening process,
beginning with initial retrieval of 3,220 records through final inclusion of 100 studies.

2.5 Data Extraction

A uniform data collection instrument was developed and preliminarily validated to ensure con-
sistency. For individual studies, the following information was collected: author and publication
date, location and environment, study methodology, sample dimensions, participant characteristics,
intervention details (including Al technique and implementation platform), precision data types
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Records identified through database searching (n = 3,220)

Y

Records after duplicates removed (n = 2,850)

¥
Records screened (titlefabstract) (n = 2.850)

—

Records excluded (n = 2,300) Full-text articles assessed for eligibility (n = 550)

Full-text articles excluded (n = 450)
- Wrong population: 120
- Not AI/ML lifestyle intervention: 180 Studies included in final review (n = 100)
- No relevant outcomes: 100
- Publication type excluded: 50

Figure 1: The PRISMA flowchart.

employed (such as continuous glucose monitoring, wearables, dietary records, electronic health
records, genomic or microbiome data), and reported clinical results (remission, HbAlc modifi-
cation, weight loss, medication utilization, adverse reactions). Information regarding participant
usage, Participant Engagement and Participant Inclusion in order to understand the use of explain-
ability/bias reduction strategies were collected. Two independent Evaluators collected the data from
each study independently; any disagreement was resolved by consensus.

2.6 Risk of Bias Assessment

To determine the quality of selected studies, tools were utilized that matched with their correspond-
ing study designs (e.g. Randomized Controlled Trials were analyzed using the Cochrane Risk-of-
bias 2 Instrument (RoB 2) and Non- Randomized Studies were assessed with the ROBINS-I tool).
In addition, as Al interventions are unique from traditional studies, risks for Data Leakage, Over-
fitting, Dependencies on Homogeneous Training Datasets, Non-Transparent Model Development
Processes, and Lack of External Validation were also evaluated. Therefore, both Methodological
Quality as measured by the tools cited above and Al Itemized Risks were defined.

2.7 Data Synthesis

Owing to the differences in methods and clinical activities for a variety of included studies, through
Al usage via different types of interventions and measuring in different ways, numerical meta-
analysis was not viable. A narrative synthesis of results was completed instead; the studies were
categorized based on: the Al or Machine Learning (ML) model (e.g., ensemble, neural network,
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reinforcement learning, clustering); category of lifestyle intervention affected (e.g., dietary changes,
exercise plans, weight management programs, digital health coaching) and measure of outcome
(e.g., achieving remission from Type 2 diabetes Mellitus [T2DM], improved glycemic control,
improved weight loss, improved adherence, patient experience).

The authors have developed this narrative synthesis based on best practices for systematic reviews
of highly heterogeneous, Al-enabled interventions where pooling study results is rarely appropriate
because of important differences in study designs and reporting [16]. For example, given that several
studies reported at least two distinctly different primary endpoints including either confirmed T2DM
remission defined using consensus criteria, or intermediate glycemic outcomes (for example, change
in HbA1c), our narrative synthesis provides clear distinction between the two types of studies.

3. RESULTS

3.1 Overview of Included Studies

The studies reviewed provide definitions for regard to the methodology used in each study, including
randomized controlled trials (RCTs), retrospective cohorts, systematic reviews, meta-analyses, and
study protocols. Collectively, these studies were published between 2015 and 2025, demonstrating
how and where the applications of artificial intelligence (Al) and machine learning (ML) to diabetes
research have evolved historically and are still being developed today. The research had geograph-
ical scope, being undertaken in North America, Europe, Asia and the Middle East. For example,
there were large-scale lifestyle intervention studies in the United Kingdom [17] in the Middle East
[18] and in India [19, 20] and digital twin models were applied in Asian and Western populations
[13, 21].

Sample sizes varied widely. Prototypical initial tasks of the Al pilot studies may have been less than
100 [22, 23] compared with population-wide application to electronic health data [24] or post hoc
digital twin cohorts [25].

Studies were also quite diverse in terms of their duration with some present short-term studies lasting
13 weeks [26] and others longer RCTs lasting up to 48 weeks [27] and economic analyses projecting
findings over a lifetime horizon [17].

The technology systems used have been highly heterogeneous. Some of these studies involved
the use of mobile health apps [28, 29] others involved the use of web-based automated counseling
systems [11, 30, 31] and some used decision support mechanisms designed for primary care doctors
[32-34]. Furthermore, conversational Al [11], wearable and accelerometer-based [35, 36], and
multimodal digital twin [13, 25] are examples of innovative modes of implementation representing
new ways of providing Al-enabled DM. These findings are put into the context of leading insti-
tutions’ position papers [37, 38, 86], and consensus documents [39] with remission increasingly
being an attainable and increasingly specific therapeutic goal. The features and the results from
the representative studies that are included in this review are presented in TABLE 2, showing both
clinical and computational aspects of the Al-based methods for T2DM. These investigations in-
clude various methodologies, spanning randomized controlled trials and practical analyses through
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narrative reviews, protocols, and consensus recommendations, implemented throughout multiple
geographical settings encompassing Asia, North America, and Europe.

Table 2: Summary of Key AI/ML Studies in T2DM.

Reference Country  Design Intervention / AI/ML Model & Primary Key Findings
Platform Data Inputs Outcomes
[40] — Narrative Al-powered ML-based HbAlc Al coaching improved
(Narrative  Review of nutrition personalization reduction, glycemic outcomes and
review, Controlled coaching using diet logs, improved adherence; limited by
multi- Trials platforms CGM, lifestyle data adherence access, trial variability, and
country lack of long-term data
trials)
[41] USA Narrative Al-enabled Supervised & deep Risk Al enhances lifestyle
Review lifestyle learning models,  prediction, medicine via predictive
medicine clustering, digital ~ weight loss, = models, personalization,
frameworks twins glycemic and decision support;
control scalability and
cost-effectiveness
emphasized
[42] International Review / Best AI/ML for Feature Standardized Provides best practices,
(multi- Practices glycemic engineering, evaluation pitfalls, and resources;
author management  supervised & deep metrics, stresses validation,
consensus) learning models;  reproducibility benchmarking, and
open-source transparency in ML
libraries diabetes research
[29] India (South Real-world Wellthy CARE Al chatbot with HbAlc, FBG, Significant HbAlc
Asian Data Analysis mobile app patient logs (meals, PPBG, BMI, reduction (-0.49% overall;
population) (16 weeks, with Al chatbot activity, BG), weight -1.16% in responders);
N=102) + educator engagement engagement strongly
support tracking correlated with outcomes
[43] South RCT (48 Integrated Al-based nutrition HbAlc Groups using Al platform
Korea weeks, digital health  analyzer + CGM, reduction, had significantly improved
N=294) care platform  clinician feedback weight loss HbAlc and weight
with Al diet outcomes vs. routine care
management
[36] USA Book Chapter Wearables + Al Pattern recognition Identification Al classified distinct
(Narrative) for glucotyping & classification of of glucotypes for early
CGM data from “glucotypes” intervention, enabling
wearables in prediabetes precision diet/lifestyle
recommendations
[44] India Comprehensive T2D Supervised (RF, Predictive Survey highlights ensemble
Survey forecasting SVM, LR), accuracy, & deep models as most
frameworks ensemble, deep algorithm effective; calls for standard
learning performance validation and deployment
frameworks
[30] Japan RCT Protocol Al-supported Image recognition HbAlc Protocol compares
(12 months,  automated for meal photos, reduction Al-driven vs. human
N=100) nutritional diet feedback, dietitian counseling; aims
intervention aligned with to test non-inferiority for
(Asken app) guidelines glycemic outcomes
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Reference Country  Design Intervention / AI/ML Model & Primary Key Findings
Platform Data Inputs Outcomes
[45] USA RCT (12 Twin Precision Hybrid digital twin; HbAlc <6.5% 71% achieved HbAlc
months, Treatment ML prediction of ~ without meds, <6.5% off meds; significant
N=150) (CGM, PPGR; RL-like weight loss,  weight loss (-8.6%); large
wearables, app, adaptation med reduction reduction in GLP-1,
coaching) SGLT-2, insulin use
[46] Germany  Narrative Predictive Predictive analytics Glycemic Algorithm-guided digital
analysis of algorithm— integrating control, therapeutic improved
controlled driven digital  patient-reported weight personalization of lifestyle
trials therapeutic for data + CGM management, interventions and showed
personalized  feedback adherence potential for clinical
lifestyle scalability
therapy
[47] South Narrative Strategic Not a single Conceptual:  Advocates for “conquest”
Korea Review approaches for algorithm; remission vs. of diabetes via early and
T2DM framework control aggressive
remission emphasizes early  strategies remission-focused
(lifestyle, intensive strategies; personalization
pharmacologic, interventions and critical
surgical) potential role of Al
in personalization
[48] South Retrospective Gastrectomy in Logistic Remission Prediction score accurately
Korea Cohort gastric cancer  regression—derived after surgery  stratified remission
patients with  diabetes prediction probability; shorter disease
T2DM score; clinical duration and higher BMI
inputs: diabetes increased remission
duration, BMI, likelihood
surgery type
[49] USA Randomized Targeted Predictive analytics Insulin Targeted intervention did
Controlled insulin- using EHR and persistence,  not improve adherence, but
Trial adherence prescription refill  HbAlc modest HbA1c reduction
interventions  data to identify observed;
guided by high-risk moderate-intensity
predictive non-adherers interventions increased
analytics hospitalizations
[33] Denmark  Decision Explainable Al Interpretable ML ~ Optimized Improved titration
Support for basal insulin with SHAP values; insulin dose  accuracy; explainability
System Trial titration EHR & CGM adjustments  increased clinician trust
(Primary Care) inputs
[50] China Mixed- AI-HEALS Knowledge graph + HbAlc, self- Testing scalability of Al
Methods (WeChat-based KBQA system; management, health education in CHCs;
Protocol health lifestyle & cost- aims to improve HbAlc,
(Cluster RCT  education) physiological data effectiveness knowledge, self-efficacy,

+ interviews)

and QoL

3.2 Types of ML Models Used

The studies reviewed have a wide variety of machine learning algorithms used throughout the
investigations, providing evidence of the diversity of the methods and the rapid advancement of
computer technologies. Traditional supervised learning methods, including decision trees, random
forests (RFs), support vector machines (SVMs), and gradient boosting ensembles, have been widely
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used to identify potential complications or likelihood of remission following bariatric surgery [5S1—
54]. Comparatively, ensemble methods have been shown to provide significantly better predictive
ability and reliability than individual classifiers in heterogeneous datasets [55, 56].

Deep learning methods addressed increasingly sophisticated data formats. Convolutional neural
networks (CNNs) demonstrated enhanced predictive performance within imaging-oriented applica-
tions, particularly in surgical populations for remission forecasting following gastric bypass pro-
cedures [23, 57]. Time-series information showed notable compatibility using recurrent neural
networks (RNNs) and long short-term memory (LSTM) structures, facilitating dynamic glucose
forecasting via continuous lifestyle and CGM information [55]. In modern studies, neural architec-
tures are built with interpretability in the focus, with the perspectives of improving the predictive
ability and keeping them transparent [58].

In addition to supervised clustering methods, unsupervised methods were implemented, in partic-
ular during the prediction of prediabetes and subgroups of individuals who were likely to respond
differently to lifestyle behavioral strategies [59].

Even though it is relatively new in the area of diabetes care, reinforcement learning (RL) demon-
strated encouraging outcomes in proof-of-concept trials. RL algorithms were able to dynamically
modulate an insulin dose to achieve superior glycemic control [22] and were successfully employed
on electronic health record data to achieve better multimorbidity management plans [24]. In the sim-
ulation of treatment pathways, there are also new uses in the prediction of nephropathy progression
with the help of deep learning [60].

The input data informing these models was equally heterogeneous, indicating the multi-dimensional
character of T2DM. Others based their studies on electronic health records [24, 34, 61], and some
included data from continuous glucose monitors [62], wearable accelerometers [35, 36] diet logs
and digital nutrition diaries [63—65]. In all these datasets, the purposes of ML applications were
similar: to enhance prediction, to make personalization, to increase adherence, and to facilitate the
overall purpose of diabetes remission.

3.3 Computational Models of AT and ML in Type 2 Diabetes Research

A varied spectrum of computational approaches, each possessing unique algorithmic principles and
clinical utilization, becomes evident through artificial intelligence (Al) and machine learning (ML)
implementation within type 2 diabetes mellitus (T2DM) remission investigation (FIGURE 2). In
addition to the clinical effectiveness of the methods, it will also be important for future studies
to evaluate computational efficiency, scalability, interpretability, and the ability of these studies to
incorporate multiple sources of data.

3.3.1 Supervised learning models.

Supervised learning techniques remain essential in diabetes investigation considering the avail-
ability of comprehensive clinical repositories with labeled results. Algorithms such as logistic
regression, decision trees, support vector machines, and ensemble methods (namely, random forests,
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Logistic Regression

Randem Forest (RF)
Algorithms

Support Vector Machines (SVM)

Supervised Learning Gradient Boosting Machines (GBM, XGBaost)

Prediction of remission likelihood
Clinical Application { HbA1¢ reduction
Leng-term complication risks

Convolutional Neural Networks (CNNs)

Recurrent Neural Networks (RNNs)

Algorithms
Long Short-Term Memary (LSTM)
Deep Learning Neural Turing Machines
Glucose forecasting from CGM
Clinical Application

Remission prediction post-surgery
Image-based dietary recognition

Al/ML Models for T2DM Remission

K-means clustering

Hierarchical clustering
Algorithms

PCA

Unsupervised Learning t-SNE

Identifying T2DM phenotypes
Clinical Application —{ Subgroup stratification
Patient clustering

RL Agents for sequential decision-making
Adaptive insulin titration
Reinforcement Learning

Clinical Application Multimorbidity management in EHR-driven models

Dynamic treatment regimens

Combination of supervised + deep learning + simulations

Digital twins integrating diet logs, genomics, and

Hybrid/Multimodal Models
wearables

Clinical Application

Simulate patient outcomes

Figure 2: Categories of Al and machine learning models applied in type 2 diabetes remission
research.

gradient boosting, XGBoost) have gained extensive utilization across tasks including risk assess-
ment, glycemic prediction, and remission probability determination. Ensemble models repeatedly
show enhanced performance compared to single classifiers through reducing overfitting and im-
proving stability among heterogeneous populations [55, 56]. Within a systematic review examining
insulin secretion modeling, emphasized that supervised learning models prove highly suitable for
structured, tabular physiological data yet frequently face limitations regarding their capacity for
capturing temporal dependencies characteristic of metabolic processes [66].
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3.3.2 Deep learning models.

Deep learning frameworks provide considerable benefits for processing complex, high-dimensional
repositories. Convolutional neural networks (CNNs) have been utilized for examining clinical
imaging and biometric information to forecast remission following metabolic procedures [57, 67].
Recurrent neural networks (RNNs) and long short-term memory (LSTM) architectures demonstrate
excellence in dynamic blood glucose prediction using continuous glucose monitoring (CGM) in-
formation, facilitating detailed forecasting of glycemic fluctuations. Neural Turing Machines and
hybrid deep models are emerging to address interpretability and sequence learning challenges [58].
However, the computational intensity of deep learning, combined with interpretability concerns,
has limited their clinical integration without supplementary explainability frameworks.

3.3.3 Unsupervised learning models.

Unsupervised ML becomes progressively utilized for patient classification and phenotype identi-
fication. Clustering methods including k-means, hierarchical clustering, and self-organizing maps
facilitate discovering concealed subpopulations among prediabetes and T2DM cohorts, particularly
those exhibiting hepatic insulin resistance compared to beta-cell dysfunction [59, 68]. Through the
use of these approaches, interventions can be specifically tailored based on understanding the un-
derlying pathophysiology. Multi-omics data from genomics, microbiome and other omics sources
were visualized and analyzed using dimensionality reduction methods (e.g. PCA, t-SNE). Arias-
Marroquinio also show that unsupervised methodology can differentiate responders vs. non-responders
into personalised nutrition programmes, corroborating the inclusion of unsupervised clustering in
clinical practice [69].

3.3.4 Reinforcement learning (RL).

Strengthening learning proposes a dynamic framework that is suitable to sequential decision making
within diabetes management. Insulin titration optimization and multimorbidity control with elec-
tronic health record (EHR) data have been optimized with the use of RL algorithms [22, 24]. The
models get to learn the best policies by interacting with time-varying environments and manipulating
interventions through feedback loop. In a review of RL in personalized medicine, Banumathi
et al. reported that RL is particularly strong in treatment optimization but noted that its use has
bottlenecks associated with sample inefficiency, safety, and the trade-off involving exploitation. In
the computational perspective, RL has been one of the most desirable yet technically challenging
methods in healthcare with Al

3.3.5 Hybrid and multimodal approaches.

Most recent such approaches have been directed towards integrating supervised, unsupervised,
and deep learning approaches into hybrid systems that can absorb multimodal data. Digital twin
systems are an example of such integration, and this is done via supervised systems as the models
of prediction, deep learning of complex signal processing, and simulation-based modelling of all
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possible scenario of interventions [13, 25]. Such methods are consistent with the projections of
computational precision lifestyle medicine, in which patient-specific models constantly adapt to
streams of new patient data. Chen and Chen (2022) and Antwi (2023) demonstrated the benefits
of hybrid modeling to improve personalized nutrition, and Anitah noted the benefits of Al-driven
nutrition coaching services, which are based on multimodal hybrid pipelines, to better glycemic
control in heterogeneous populations [40, 70, 71]. Many researchers stress that hybrid models
are better at personalization, but there are issues with scalability, model explainability and their
integration with clinical practice [72, 73].

3.3.6 Challenges and technical considerations.

In spite of their potential, AI/ML models have technical weaknesses. Sparse, non-uniform, and
heterogeneous data sets in clinical environments are at risk of bias and overfitting [74]. Whereas
tree-based models can continue to be interpreted, deep learning models can be labelled as black
boxes, requiring post-hoc prediction techniques like SHAP or LIME. The role of federated learning
and privacy-preserving Al solutions becomes more topical to respond to data-sharing constraints
of multi-institutional research. Also, the regulatory and ethical aspects are not well developed and
such issues as equity of access and transparency are pivot points [38]. Furthermore, the choice
of model is highly dependent on the specific parameters of the diabetes dataset. For instance, the
temporal, high-frequency nature of CGM data necessitates the use of RNNs or LSTMs to effectively
capture time-series dependencies and forecast glycemic excursions. In contrast, models built on
EHR data must account for high dimensionality, missing values, and sparse, irregular data, often
prioritizing ensemble methods like Random Forests or Gradient Boosting for their robustness and
superior handling of heterogeneous, tabular data.

Broadly speaking, the computational front of AI/ML in diabetes remission includes the supervised
learning to make predictions, the deep learning to handle complex and time-sensitive data, the unsu-
pervised to identify subgroups, the reinforcement learning to achieve adaptive optimization, and the
hybrid multimodal method to personalize the precision. Each paradigm has its contribution to the
progress of remission-focused care, and the current technical and ethical issues provide justification
to interdisciplinary cooperation among computer scientists, clinicians, and policymakers.

3.4 Precision Data and Personalization Methods

The focus on personalization can be considered one of the pinnacles of Al-assisted diabetes research.
A number of studies were devoted to predictive modeling of postprandial glycemic responses (PP-
GRs), in which dietary interventions based on PPGR profiles of individuals had better results than
standard diets prescriptions. Ben-Yacov, a researcher, demonstrated that diets increased through the
control of PPGR by using Al were more effective than diets based on gender in prediabetes [63],
also replicated the results by demonstrating that Al prediction of glycemic excursions could inform
highly personalized dieting recommendations. This effect is supported by more modern RCTs, in
which it was revealed that algorithm-diets proved to be more effective in terms of weight loss and
glucose metabolism in comparison to traditional low-fat diets [65].
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Classifying patients according to pathophysiological characteristics featured among additional per-
sonalization approaches. De Hoogh in 2022 demonstrated that implementing subgroup-targeted
lifestyle programs for managing diabetes subtypes (namely, isolated hepatic insulin resistance) pro-
duced substantially improved remission rates compared to standard management [5]. A comparable
emphasis on intensive, individualized programs by Taheri in 2020 for recently diagnosed patients
emphasized the importance of timing concerning personalization of therapeutic strategies [18].

Another promising development has been digital phenotyping, where continuous glucose monitor-
ing, and wearable-based behavioral metrics are employed to make adaptive, real-time suggestions.
It was demonstrated that digital phenotyping built upon CGM may be successfully used to support
the personalization of lifestyle [75], whereas the study by Dwibedi revealed the possibility of self-
managed programs adapting recommendations based on the data of daily behavioral and glycemic
patterns [76]. Multimodal personalization strategies were also discussed, where there was integra-
tion of genomic, metabolomic and behavioral data into the digital twins which simulate personalized
responses of lifestyle changes [25, 77]. Continuous glucose monitoring (CGM), wearable data and
accelerometers, dietary data with image recognition, genomic and microbiome data, and electronic
health records (EHR) or imaging are examples of data stream that are fed to AI/ML models as in
FIGURE 3 above. Such inputs are pre-researched and incorporated in the computation pipelines to
create individual lifestyle intervention measures like customized diet, physical activity, pharmaceu-
tical regimen, and weight control measures.

Diet Logs & Image Genomics & EHR & Clinical
Recognition Microbiome Imaging

oy
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Figure 3: Conceptual model of Al-enabled precision lifestyle medicine

3.5 Intervention Delivery Channels

The delivery mechanisms of Al interventions were diverse and spanned patient-facing, provider-
facing, and hybrid platforms. Mobile applications and digital therapeutic platforms were commonly
employed to deliver structured, interactive interventions, [28, 29, 76]. A researcher in 2023 demon-
strated that Conversational Al (as deployed in many instances using voice-based chatbots) would
provide both quicker and better results than traditional methods, and provide better results regarding
insulin titration, adherence to treatment, and overall glycemic control [11].
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Clinician member-facing decision support systems were similarly important to the overall creation
of these therapies. For example, a scientist created a clinician-facing decision support system
using machine-learning (ML) techniques for drug management [32], while 2 scientists developed
explainable artificial intelligence (Al)-based systems for insulin titration and pharmacotherapy [33,
34]. In addition, these systems have now also been extended to drug-response prediction and overall
optimization of pharmacotherapy [78, 79].

The most technologically advanced interventions were created within platform technology referred
to as Digital Twin Platforms — defined as systems that utilize a variety of lifestyle, physiologic, and
behavioral data to effectively build models of both present and future outcomes based on individu-
alized circumstances. Digital Twin Platforms showed substantial improvement in glycemic control,
weight loss, and remission rates compared with traditional approaches [13, 25, 77]. Furthermore,
integrating regenerative medicine, such as the application of stem cell therapies coupled with digital
monitoring, further exemplifies the evolving technology of advanced Al systems and their capacity
to both educate and transform the method of delivery of therapeutic interventions as discussed by
Warrier in 2024 [80]. Clearly, the power of Al is not only to create this new form of medicine, but
also to completely reshape the way that we deliver interventions to patients.

3.6 Clinical Outcomes

Al-enabled interventions showed consistent clinical outcomes across studies, but effectiveness greatly
varies according to intervention intensity and primary outcome.

3.6.1 Efficacy for T2DM remission

Clinical studies with explicit weight loss and remission as primary goals produced the greatest num-
ber of positive effects on patient health. The amount of remission produced also varied from study
to study depending on both the type of intervention used and the frequency at which it delivered
treatment. For instance, de Hoogh in 2022 determined that 75% of clients engaged in lifestyle
interventions based on subtyping achieved remission, whereas in comparison only 22% of clients
who received standard medical treatments achieved remission [5]; while Joshi in 2023 found that
72.7% of clients engaged in an intervention using digital twin technology achieved remission [13].
Due to the short follow-up periods reported by most of these studies (13 weeks - 48 weeks), results
regarding the long-term durability of these remissions should be viewed with caution.

3.6.2 Efficacy for glycemic control and secondary outcomes

Although some studies were unable to show full remission or utilized non-complete markers as pri-
mary endpoints, the majority of the studies showed a notable improvement in glycemic sensitivity.
All except for one of the interventions showed a statistically significant decrease in HbAlc levels
when compared to regular treatment [25, 81]. Another significant finding in nearly all of the studies
was weight loss, with noteworthy weight losses reported across all 10 of the studies assessing in-
tensive lifestyle intervention. There is ample evidence that participants in DIABETES INSTITUTE
[18], DIRECT [17], and JAMA-based Intensive Lifestyle Models [82, 83]. Scientists experienced
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clinically meaningful weight losses, with many participants maintaining their losses more than a
year later. Newer combinations of intervention, with pharmacotherapy and lifestyle, also showed
remission and relapse dynamics in a study by Mclnnes in 2023 [84]. Importantly, safety data for
Al-guided interventions was, in general, preserved, with no increased frequency of hypoglycemia
across trials [81]. Medication reduction was also reported, with pharmacotherapy de-escalation
achieved through Al-guided lifestyle modification programs [45]. Novel pharmacological trials
such as dorzagliatin monotherapy further expand the remission landscape [85].

Long-term outcomes were more difficult to assess given the limited duration of most studies. How-
ever, evidence from large-scale observational trials such as Look AHEAD demonstrated that remis-
sion is associated with reduced cardiovascular risk and mortality , supporting the long-term value
of remission-focused interventions. Position statements and consensus reports [37, 38, 86] now
advocate remission as a standard clinical target.

Digital Twin-based models report the most consistently effective intervention platforms in com-
parison to any other type (i.e. chat-based and standalone) of tools. According to existing results,
Digital Twin platforms were able to achieve remission rates of greater than 70% by combining and
integrating several different kinds of data modalities for the creation of personalized intervention
strategies. Although conversational Al-based models (i.e. voice-based chatbots) were found to help
enhance participant adherence and titrate insulin doses, standalone application-based models were
able to show the same median statistically significant decrease in HbAlc levels (i.e. about 1.5%)
as well as improvements in participants’ lifestyle.

3.7 Patient Engagement and Adherence

The performance of any type of intervention is fundamentally dependent on the level of patient
engagement with said intervention. Research using Al-based voice assistants [11], and the use of
empowerment-based methods (Ingul et al., 2025) found consistent evidence of increased adherence
rates and a positive relationship between patient’s engagement with the intervention and favourable
clinical outcome. The use of real-time feedback systems mostly based on continuous glucose
monitoring (CGM) and wearables resulted in the increased retention rates of patients as well as
increased engagement with the intervention on a daily basis [75]. Numerous studies have reported
a strong relationship between the sustained engagement level of patients with the intervention and
positive outcomes, most notably in the case of digital twin programmes (Shamanna et al., 2024).
Digital twin programmes that provided both personal coaching and interactive feedback resulted in
improved adherence and positive outcomes as demonstrated by the ANODE e-coaching platform
[31]. Nevertheless, adherence continues to be an ongoing issue with respect to digital health in-
tervention, as several studies have reported decreases in engagement levels over time, indicating
that the use of behavioural reinforcement and patient-centred design are key factors in sustaining
long-term engagement with digital health interventions.

3.8 Explainability and Trust

Trust in an Al-based system can be influenced by transparency and interpretability. Other studies
used interpretable ML to study non-linear metformin dose responses which lead to more clinical
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confidence in the algorithm’s advice. Correspondingly, healthcare providers were more comfort-
able with decision support systems that had explainability features (e.g., SHAP analysis, feature
attribution) [33, 34].

In most cases, patients have positively discussed Al-driven interventions when algorithmic outputs
were supplemented with transparency and education. Nevertheless, the issues regarding black-
box Al existed in the literature, and Rothberg warn that in the absence of interpretation, usage
might be confined [87]. In general, explainability techniques have not been yet widely used, which
is a direction of further evolution. Recent assessments stress that the trust-building will demand
not only explanation transparency of the algorithms but also their involvement with the processes
within the clinics (Fatima, 2024; Jahangir et al., 2023). However, despite the importance of trust,
this review found a significant lack of rigorous Al validation in the included studies. External
validation of models on new, unseen patient populations was rarely reported. This reliance on
internal validation, combined with a frequent lack of transparency in feature selection and model
development, significantly increases the risk of overfitting and limits the generalizability of the
reported outcomes.

3.9 Ethical, Practical, and Regulatory Issues

One of the ideas to reappear in the studies incorporated was the ethical and regulatory environment
of Al in healthcare. Protocol papers specifically listed privacy and informed consent [50], and
algorithmic bias was an issue of concern identified in various reviews when models were trained
on homogeneous datasets [74]. There are still clinical validation and deployment challenges. A
range of Al models has shown excellent internal performance and insufficient external validation
in restricting generalization [9].

The issue of equity also became imperative. Most research was based in high-income or urban
communities and very few interventions were created or studied in low-resource groups [19]. Unless
equity is a deep consideration - Al assisted diabetes management stands the risk of widening the
gap. Together with the lack of specification of regulatory mechanisms for new artificial intelligence
systems such as digital twins and reinforcement learning agents, this represents a significant barrier
for future clinical translation. Sampling is in line with the suggestions from Casey et al. (2019)
and expert position statements for standardisation including homogeneous definition, consistent
outcome reporting and the incorporation of ethical approaches as a guide for clinical implementation
[37, 38, 86]

4. DISCUSSION

4.1 Summary of Key Findings

This review illustrates that artificial intelligence (Al) and machine learning (ML) are fast changing
the way of treating type 2 diabetes mellitus (T2DM), and remission is becoming an accepted ther-
apeutic goal instead of maintenance with glycemic control. In the studies that were evaluated, Al-
based programs demonstrated significant clinical improvements, and one study reported remission
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rates of over 70%. For example, the lifestyle sub-typing led to a remission in three-quarters of the
subjects compared to one-fifth of controls, respectively [5], while a person-specific nutrition and
lifestyle intervention based on a digital twin has resulted in a remission of three-quarters of the
subjects and a reduction of fatty liver disease markers [13]. Similarly, the DiRECT and DIADEM-
I studies revealed that comprehensive, early lifestyle programs correlate with remission among
substantial patient proportions, particularly individuals with briefer disease duration [3, 17, 18].

New evidence also supports the wider remission therapeutic background. Scientists demonstrated
sustained remission in intensive lifestyle interventions for one year, with the help of systematic
reviews and meta-analyses supported the idea that structured lifestyle programs positively affected
the increase of remission. On a guideline level, the American College of Lifestyle Medicine [38]
and the international consensus report on remission definitions [39] now formally acknowledge
remission as a practical clinical outcome, consistent with the paradigm shift that is happening in
Al-based interventions. Furthermore, recent pharmacological research, including the study by Zeng
in 2023 about the use of a glycemic-lowering agent in patients, demonstrates that novel drugs
may induce remission but only medications in drug-naive patients; therefore, a combination of
pharmacotherapy and the personalization of lifestyle programs with Al might be possible [85].

The benefit-deriving subpopulations were usually those who had recently diagnosed diabetes or
shorter duration of the disease or certain metabolic phenotypes. Scientists report that in DiRECT,
the duration of diabetes and HbAlc were the predictors of the successful remission, whereas the
Asian studies have shown that patients who are not obese can also receive digital lifestyle programs
[19]. Precision nutrition and digital twin methods demonstrated Al has the ability to individualize
interventions to these inhomogeneous patient populations [21]. Notably, based on updates to prac-
titioners, remission is not a dichotomous end state and should not remain a stable situation but is a
process that should be monitored and subject to care measures [88, 89].

4.2 Interpretation and Implications

Compared to traditional lifestyle and pharmacotherapy (only), Al-based precision strategies achieve
distinctive benefits because they customize treatment based on the biological and behavioral por-
traits of a particular patient. E.g., customized postprandial glucose response (PPGR) diets provided
better glycemic results than a regular Mediterranean diet [63] and predictive Al algorithms could
predict glycemic excursions based on a given food [90, 91].

Equally, standard insulin titration was surpassed by a reinforcement learning (RL) algorithm, which
allowed more glycemic control and lower hypoglycemia [22]. These findings indicate the effec-
tiveness of adaptive Al-based models versus non-adaptive clinical guidelines.

Al systems can develop an individual digital phenotype based on precision measurements of contin-
uous glucose [6] wearable acceleration data [35, 36], and genomics/microbiome profiling [92, 93].
Global consolidation of such multimodal data into systems is an integral part of digital twins [13, 25]
producing a paradigm shift between one-size-fits-all prescriptions and a highly granular, precision
lifestyle medicine. Notably, Al does not substitute clinicians but increases their abilities to provide
more personalized and efficient care [33, 34]
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The latest clinical trials also demonstrate how individualized diets with the assistance of digital
tracking and Al analytics can be used to produce clinically significant results. A researcher revealed
that diets, tailored to reduce PPGR, had better weight loss than low-fat diets, which confirms the
usefulness of algorithm-based source customization even in non-diabetic groups with abnormal
glucose metabolism. Collectively, these studies indicate that personalization mediated by Al can
not only increase remission rates but also overall significant cardiometabolic risks reduction [65].

To illustrate how multiple data streams and computational models interact within precision lifestyle
medicine, we developed a conceptual framework that depicts the flow of patient data into Al-based
processing, leading to adaptive, personalized interventions. The model emphasizes the feedback
loop whereby clinical outcomes are continuously reintegrated into the system to refine recommen-
dations through reinforcement learning and continuous training (FIGURE 4).

4.3 Clinical Translation and Scalability

Although several Al interventions are already being deployed in practice, including mobile diabetes
apps [28], conversational Al for insulin titration [ 11], and digital therapeutics in South Asian patients
[29], most studies remain proof-of-concept. Wider translation faces hurdles such as workflow inte-
gration, clinician acceptance, and regulatory oversight [8, 14]. Studies that incorporated explainabil-
ity, such as Akimoto on metformin dose—response modeling [94] and Xiao on interpretable neural
architectures, demonstrated that transparency enhances clinician trust [58]. Without explainability,
however, Al adoption may be limited, as highlighted in cautionary perspectives [87].

Scalability also requires demonstration of cost-effectiveness. The DiRECT/Counterweight-Plus
program was found to be cost-effective in the short term and cost-saving over a lifetime horizon
[17]. The majority of digital twin methods and programs utilize computational infrastructure and
have also performed well regarding the scalability of retrospective cohorts >1000 participants [25].
Reviews of bariatric surgery remission models corroborate that while predictive accuracy continues
to improve, the development of better real-world validation and the establishment of standardized
approaches is paramount if they are employed on a wider scale [57]. In addition to lifestyle and
surgery, emerging regenerative approaches such as stem cell therapy are supported through Al
monitoring. Warrier offers an avenue for future integration of advanced biological therapy and
precision-based digital health systems [80].

4.4 Limitations of Included Studies

While the results are encouraging, there are many limitations of the evidence base. One signifi-
cant limitation is that most of the interventional studies were short-term, with a follow-up of 13
to 48 weeks. Therefore, we cannot conclude whether remission achieved from these Al-driven
interventions will be sustained long term [5, 81]. Although there were high rates of remission, we
do not know how long the long-term durability of remission will be in Al-driven interventions.
In contrast to Al driven interventions, long-term follow-up from traditional lifestyle interventions
(e.g., Look AHEAD) confirmed that achieving sustained remission was associated with reduced
cardiovascular morbidity and mortality [95]. When designing future clinical trials of Al-based
interventions, researchers should utilize long-term (= 1-2 years) follow-up assessments.
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Figure 4: Conceptual model of Al-enabled precision lifestyle medicine

In addition, we found a lack of methodological rigor and transparency in both AI and ML studies.
ML frameworks are challenged by bias, as demonstrated by the lack of homogeneity in the datasets
used to train most algorithms, which increases the likelihood of overfitting and reduces the general-
izability of results [74, 96]. Very few of the studies included external validation, and the majority of
studies provided little information about how the algorithms were developed, including how features
were selected, how they handled class imbalance, and how they calibrated their models. A lack of
transparency and rigor in the development and validation of these algorithms presents a significant
barrier to clinical translation and reproducibility.
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Third, many studies on Al and ML were conducted with relatively few participants [22] in the early
phases of reinforcement learning and only looked at ”n of 1 nutrigenomic investigations [64].

Bias present in ML frameworks presents a second challenge. Numerous systematic increaser views
have pointed out [74, 96], that most algorithms are often trained on homogeneous datasets, which
increases overfitting and reduces generalizability. In addition, external verification of models has
been uncommon, and models are often developed using a limited demographic, primarily middle-
aged individuals from high-income countries [9, 91]. In addition, design considerations regarding
ethical issues such as informed consent, privacy and equity were highlighted in investigations of
protocols, including AI-HEALS [50]. Other limitations include the inability of studies to agree on
the use of standard criteria to assess remission in all studies [39].

4.5 Research Gaps and Future Directions

Multiple significant limitations in the literature exist at this time, including the lack of studies
involving children and older adults, yet these populations have the highest burden of diabetes.
Additionally, very few studies explore the developing world and low- to middle-income countries.
An exception to this is the DIADEM-I study conducted in Qatar [18] and the digital programs on
diabetes from India [19] underlining the need for equitable access to Al-enabled healthcare for all.

Methodologically, multimodal ML models integrating genomic, microbiome, behavioral, and clin-
ical data remain rare. While digital twins [13, 25, 77] represent an important step in this direction,
further work is needed to scale multimodal personalization. Reinforcement learning, which showed
strong proof-of-concept results [22, 24], also requires larger randomized trials to confirm safety
and efficacy. Ethical and regulatory frameworks must also evolve. Without agreed upon norms for
transparency, liability and validation, there is risk that black-box Al will be deployed even before
it is ready, because it facilitates precarious use, bringing out worse inequities [ 74, 87].

High-quality research projects to come will be larger-patient RCTs with clinical outcomes, cost-
effectiveness, and sustainability of interventions powered by Al over more extended periods. Re-
search combining digital phenotyping, nutrigenomics, reinforcement learning, and regenerative
medicine is the most exciting frontier [22, 64, 70, 75] More broadly, dynamic conceptual models of
remission (where remission should be viewed as a continuum requiring surveillance and adaptive
strategies rather than an endpoint) should be part of the evidence base [88, 89].

5. CONCLUSION

This review highlights the revolutionary impact that artificial intelligence may have in changing
the paradigm of type 2 diabetes management, in particular the shift in therapeutic focus away from
achieving lifelong glycemic control toward the more ambitious but reachable goal of remission. As
the evidence from varied interventions continues, it appears that Al-enabled systems are increasingly
able to integrate complex, multimodal data streams and generate personalized strategies which can
change dynamically to meet the needs of individual patients. The use of Continuous Glucose
Monitoring (CGM), Wearables, Dietary Tracking Apps, Genomic Data, Behavioral Data along
with Artificial Intelligence enables Lifestyle Interventions to be more tailored to each individual
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than has ever been achieved using a traditional One Size Fits All Approach. Al Platforms not
only enable precise and accurate interventions but also facilitate improved Patient Engagement by
enabling Patients to take an active role in their Health Management, increase their sense of Self-
Efficacy, improve compliance to prescribed treatment and decrease the Emotional Burden of having
Diabetes through Digital Support Mechanisms, Conversational Interfaces, and Adaptive Feedback
mechanisms that provide means for Patients to more effectively manage their Diabetes, Tools to
assist them with adherence to prescribed treatment, A way for them to enhance their Self-Efficacy
regarding Diabetes Management, A reduced Emotional Burden due to having Access to Digital
Support Mechanisms, Conversational Interfaces and Adaptive Feedback Mechanisms that empower
Patients to manage their own Diabetes.

Furthermore, while the use of Al holds great promise, we must also acknowledge the limitations of
the quality of the current body of Evidence supporting the effectiveness of these types of interven-
tions. To date, the majority of studies have only been of very short duration with very small Sample
Sizes; thus, it is not possible to make any firm conclusions regarding the Long-Term Sustainability
of Remission. Addressing the gap in knowledge regarding this issue is one of the Primary Research
Priorities.

The need for efficacy assessment of diabetes management strategies across different populations
(children, elderly, and resource-poor) who have been traditionally underrepresented in clinical re-
search presents a unique opportunity and challenge in diabetes management as Al is applied to
diabetes care. In order for Al to successfully help close the existing health disparities gap without
exacerbating it, efficacy assessment of these treatment modalities will be necessary.

As Al continues to be utilized in the management of diabetes, the three key pillars for progress
in the development of effective Al-based diabetes management tools will be scientific integrity,
transparency, and equitable access to the care being facilitated through the use of artificial intel-
ligence. Further, the results of future randomized clinical trials focused on the sustainability over
time of any successful treatment response and also the economic benefit of utilizing an Al-equipped
treatment delivery system will need to be evaluated. Finally, to ensure that the medical and patient
stakeholders have confidence in the reliability of the decisions being made based on the use of Al-
assisted treatment tools, there will need to be clear justification as to the rationale for the clinical and
patient decision-making processes, as well as to ensure the ethical basis of that decision-making.
Lastly, in all future design, implementation and scale of innovation based on artificial intelligence,
the goal should be equitable access to those innovations for all patient populations, regardless of
where they live, what their socioeconomic status is, or their level of digital literacy.

In summary, through using artificial intelligence in the management of type 2 diabetes around the
world, millions of people will have access to remission as a viable outcome for their condition
through artificial intelligence and its different channels of development, research, testing, and future
use of Al, Al based precision lifestyle medicine will be developed, validated and ethically translated
to the clinical setting in order to create an individualized easier more efficient and revolutionary way
of managing diabetes than has been available in the past.
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